Abstract

The Common quail Coturnixcoturnix Linnaeus, 1758 is a wild migratory bird which is distributed in Eurasia and North Africa, everywhere with an accelerating decline in population size. This species is protected by the Bonn and Berne conventions (1979) and by annex II/1 of the Birds Directive (2009). In Algeria, its breeding took place at the hunting centre in the west of the country. Breeding errors caused uncontrolled crosses between the Common quail and Japanese quail Coturnixjaponica Temminck & Schlegel, 1849. In order to help to preserve the natural genetic heritage of the Common quail and to lift the ambiguity among the populations of quail raised in Algeria, it seemed essential to begin to describe the chromosomes of this species in the country since no cytogenetic study has been reported to date. Fibroblast cultures from embryo and adult animal were initiated. Double synchronization with excess thymidine allowed us to obtain high resolution chromosomes blocked at prometaphase stage. The karyotype and the idiogram in GTG morphological banding (G-bands obtained with trypsin and Giemsa) corresponding to larger chromosomes 1–12 and ZW pair were thus established. The diploid set of chromosomes was estimated as 2N=78. Cytogenetic analysis of expected hybrid animals revealed the presence of a genetic introgression and cellular chimerism. This technique is effective in distinguishing the two quail taxa. Furthermore, the comparative chromosomal analysis of the two quails and domestic chicken Gallusgallusdomesticus Linnaeus, 1758 has been conducted. Differences in morphology and/or GTG band motifs were observed on 1, 2, 4, 7, 8 and W chromosomes. Neocentromere occurrence was suggested for Common quail chromosome 1 and Chicken chromosomes 4 and W. Double pericentric inversion was observed on the Common quail chromosome 2 while pericentric inversion hypothesis was proposed for Chicken chromosome 8. A deletion on the short arm of the Common quail chromosome 7 was also found. These results suggest that Common quail would be a chromosomally intermediate species between Chicken and Japanese quail. The appearance of only a few intrachromosomal rearrangements that occurred during evolution suggests that the organization of the genome is highly conserved between these three galliform species.

Highlights

  • Birds represent a class of tetrapod vertebrates which contains a vast diversified variety of species (Jarvis et al 2014)

  • The two analyzed hybrid embryos showed a coexistence of three cell types that we have identified as chimeric hybrids (Figure 6A)

  • The analysis of hybrid animals bred in western Algeria showed us that introgressive hybridization affected the genetic heritage of the Common quail Coturnix coturnix and would be a threat to its preservation

Read more

Summary

Introduction

Birds represent a class of tetrapod vertebrates which contains a vast diversified variety of species (Jarvis et al 2014). Few of them were deeply and accurately analyzed by using the chromosome banding. The avian genome is characterized by very high chromosome number, with an average of 2N=76 - 80 (Werner 1927, Bed’Hom et al 2003). That is why mostly bird karyotypes are analyzed partially and limited to the few macrochromosomes (Shibusawa et al 2004). Despite their small physical size, microchromosomes encode 50% of genes and are characterized by high CpG islands content and an early replicating pattern (Dutrillaux 1986, McQueen et al 1996, Rodionov 1996, Burt 2002, Skinner et al 2009, Hansmann et al 2009)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call