Abstract

The energy bands and band gaps of Cu2NiXS4 (X ​= ​Sn, Ge, Si) semiconductor materials have been studied and analyzed by using quantum-chemical calculations within the DFT framework. Using different exchange-correlation functionals, the energy gaps of the studied systems were estimated and determined, and their band structure were studied in detail. Based on the results of spin-polarized and spin-orbit mBJ-calculations, bands of t2g states and direct band gaps with values of 1.32, 1.56, and 2.58 ​ eV, were found for Cu2NiSnS4, Cu2NiGeS4, and Cu2NiSiS4, respectively, indicating the suitability of these materials as a suitable light-absorbing layer for a new generation solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.