Abstract

Photonic crystal fibers (PCFs) can guide light by the photonic bandgap (PBG) effect created by the periodically arranged air holes in the cladding. In this paper, the bandgap properties of Kagome photonic crystal fibers (KPCFs) are investigated in detail. First, the bandgap properties of PCFs based on the basic Kagome lattice are analyzed and compared with the PBGs of PCFs based on honeycomb and triangular lattices. We highlight the similarities between KPCFs and honeycomb PCFs in their PBGs, both having air-guiding regions only at very large air filling fractions (AIFs), whereas the PBGs of triangular PCFs can have large air-guiding regions at smaller AIFs due to the difference in the gap structure. In the second half of this paper, we show how the PBGs of KPCFs can be modified by introducing an extra air hole into the vacant space of the original lattice. In particular, KPCFs with medium-sized air holes can be designed to guide air by introducing extra air holes of a larger size. The air-guiding regions of KPCFs with very large air holes can also be greatly extended by the extra air holes. These air-guiding regions occur at higher normalized frequencies, resulting in larger air hole pitches favorable for fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call