Abstract

We report tuning of energy bandgap of nanosized carbon dots by chemical modification with electron-accepting moieties. The carbon dot derivatives were synthesized by oxidation and hydrothermal reaction, followed by addition/substitution reactions, resulting in uniform-sized carbon dots. Structural characterization and photophysical investigation were performed by applying various microscopic and spectroscopic techniques. The bandgap of the carbon dots was controlled by chemical functionalization with nitro and nitrile groups, as evidenced by the red-shift in the absorption and photoluminescence emission spectra. Calculations based on density functional theory were employed to support the observed bandgap tuning via functionalization of the carbon dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.