Abstract

This paper reports on the fabrication of InxGa1−xN (InGaN) layers with various compositions ranging from InN to GaN using a cost-effective low-temperature plasma-enhanced chemical vapor deposition (PECVD) method and analyzes the influence of deposition parameters on the resulting films. Single-phase nanocrystalline InGaN films with crystallite size up to 30 nm are produced with deposition temperatures in the range of 180–250 °C using the precursors trimethylgallium, trimethylindium, hydrogen, nitrogen, and ammonia in a parallel-plate type RF-PECVD reactor. It is found that growth rate is a primary determinant of crystallinity, with rates below 6 nm/min producing the most crystalline films across a range of several compositions. Increasing In content leads to a decrease in the optical bandgap, following Vegard’s law, with bowing being more pronounced at higher growth rates. Significant free-carrier absorption is observed in In-rich films, suggesting that the highly measured optical bandgap (about 1.7 eV) is due to the Burstein–Moss shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.