Abstract

AbstractTwo‐dimensional (2D) semiconducting boron nanosheets (few‐layer borophene) have been theoretically predicted, but their band gap tunability has not been experimentally confirmed. In this study, hydroxy‐functionalized borophene (borophene‐OH) with tunable band gap was fabricated by liquid‐phase exfoliation using 2‐butanol solvent. Surface‐energy matching between boron and 2‐butanol produced smooth borophene, and the exposed unsaturated B sites generated by B−B bond breaking during exfoliation coordinated with OH groups to form semiconducting borophene‐OH, enabling a tunable band gap of 0.65–2.10 eV by varying its thickness. Photoelectrochemical (PEC) measurements demonstrated that the use of borophene‐OH to fabricate working electrodes for PEC‐type photodetectors significantly enhanced the photocurrent density (5.0 μA cm−2) and photoresponsivity (58.5 μA W−1) compared with other 2D monoelemental materials. Thus, borophene‐OH is a promising semiconductor with great optoelectronic potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.