Abstract

The corrugation pattern and electronic structure of graphene on MgO (111), which is a lattice-mismatched substrate, were investigated using the ab initio method. On Mg-terminated octo-polar reconstructed MgO (111), graphene was physisorbed and shaped into a stripe-like corrugation pattern. Due to weak charge transfer at the interface, the graphene was of the n-type doped, and its low effective mass was preserved. On the other hand, graphene on O-terminated octo-polar reconstructed MgO (111) showed a larger corrugation triggered by periodic oxygen–carbon chemisorption. In addition, a band-gap opening, which was induced by the periodic chemisorption, of 0.294 eV was observed. The results indicate that a corrugation structure induced by the lattice-mismatched substrate is highly effective for band-gap engineering treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.