Abstract

We have demonstrated that bandgap energy of Si can be controlled by micro-mechanically structured Si beams (250 nm thick, 3 μm wide, and 15 μm long) elastically deformed by an external force. Microscopic photoluminescence spectroscopy reveals that downward bending of the beam by 3 μm reveals a red shift in the peak from ~1100 nm up to ~1300 nm. It is found from calculations based on deformation potentials and finite element method that tensile strain as large as ~1.5% is generated in the top surface of the deformed beam and responsible for the red shift of the peak. The presented result should be a proof of concept to cancel wavelength fluctuation unavoidably occurring on uncooled LSIs in terms of stress application, and thereby an enabler of wavelength division multiplexing implementation on a chip. The applications of other beam materials such as Ge and GaAs are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call