Abstract

This paper presents a mechanistic study on the doping of Zn-Cu-In-S/ZnS core/shell quantum dots (QDs) with Mn by changing the Zn-Cu-In-S QD bandgap and dopant position inside the samples (Zn-Cu-In-S core and ZnS shell). Results show that for the Mn:Zn-Cu-In-S/ZnS system, a Mn-doped emission can be obtained when the bandgap value of the QDs is larger than the energy of Mn-doped emission. Conversely, a bandgap emission is only observed for the doped system when the bandgap value of QDs is smaller than the energy gap of the Mn-doped emission. In the Zn-Cu-In-S/Mn:ZnS systems, doped QDs show dual emissions, consisting of bandgap and Mn dopant emissions, instead of one emission band when the value of the host bandgap is larger than the energy of the Mn-doped emission. These findings indicate that the emission from Mn-doped Zn-Cu-In-S/ZnS core/shell QDs depends on the bandgap of the QDs and the dopant position inside the core/shell material. The critical bandgap of the host materials is estimated to have the same value as the energy of the Mn d-d transition. Subsequently, the mechanism of photoluminescence properties of the Mn:Zn-Cu-In-S/ZnS and Zn-Cu-In-S/Mn:ZnS core/shell QD systems is proposed. Control experiments are then carried out by preparing Mn-doped Zn(Cu)-In-S QDs with various bandgaps, and the results confirm the reliability of the suggested mechanism. Therefore, the proposed mechanism can aid the design and synthesis of novel host materials in fabricating doped QDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.