Abstract

All the major worldwide direct-shipping iron ore deposits associated with banded iron formations (BIF) are characteristically deeply weathered. They extend to considerable depths below the water table and show well-preserved primary structures and textures, but characteristically most deposits contain no evidence of chert bands being present prior to weathering. Recent studies have found evidence of hydrothermal and/ or metamorphic influences in the development of certain ore deposits and new genesis models such as the supergene-modified hypogene model have been postulated for major high-grade iron ore deposits. Nevertheless, there are many high-grade deposits that show no evidence of hypogene alteration and for which a hypogene or metamorphic genesis is unreasonable that are automatically ascribed to supergene enrichment, commonly erroneously attributed to lateritic weathering in tropical environments. Laterite (sensu lato) is a soil formation in which primary textures are destroyed and is underlain by a pallid zone showing the preservation of chert and the depletion, not enrichment, of iron oxides and thus is totally incompatible with the formation of the high-grade ore deposits. Various theories and models that purported to explain the conditions under which such a uniquely BIF-related dissolution of quartz and residual accumulation of hematite could occur by supergene processes typically conflict with current understanding of groundwater hydrology, chemistry, weathering processes and soil formation.Supergene enrichment of ore is universal in the leaching of gangue minerals such as iron silicates, carbonates and apatite and supergene enrichment of BIF to low-grade ore is common in near surface environments above the water table such as ferrugenised BIF outcrops, detrital ore deposits, and some shallow ore deposits that have been subjected to prolonged exposure to fresh meteoric water. In all cases of supergene enrichment traces of the chert bands are visible and the dissolution or replacement processes for the removal of quartz are clear, in direct contrast to the most important deep saprolite ore deposits that show no trace of chert bands.The widespread acceptance of an inappropriate and untenable supergene enrichment model inhibits search for the true origin of the ore and our ability to predict and find concealed high-grade ore deposits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.