Abstract

Periodic lattices in hyperbolic space are characterized by symmetries beyond Euclidean crystallographic groups, offering a new platform for classical and quantum waves, demonstrating great potential for a new class of topological metamaterials. One important feature of hyperbolic lattices is that their translation group is nonabelian, permitting high-dimensional irreducible representations (irreps), in contrast to abelian translation groups in Euclidean lattices. Here we introduce a general framework to construct wave eigenstates of high-dimensional irreps of infinite hyperbolic lattices, thereby generalizing Bloch's theorem, and discuss its implications on unusual mode counting and degeneracy, as well as bulk-edge correspondence in hyperbolic lattices. We apply this method to a mechanical hyperbolic lattice, and characterize its band structure and zero modes of high-dimensional irreps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.