Abstract

We consider a one-dimensional photonic crystal (1DPC) composed of double-layered dielectrics. Electric permittivity and magnetic permeability of this crystal depends on the incident electromagnetic wave frequency. We suppose that three level atoms have been added to the second layer of each dielectric and this photonic crystal (PC) has been doped. These atoms can be added to the layer with different rates. In this paper, we have calculated and compared the band structure of the mentioned PC considering the effect of added atoms to the second layer with different rates through the Fresnel coefficients method. We find out that according to the effective medium theory, the electric permittivity of the second layer changes. Also the band structure of PC for both TE and TM polarizations changes, too. The width of bandgaps related to “zero averaged refractive index” and “Bragg” increases. Moreover, new gap branches appear in new frequencies at both TE and TM polarizations. In specific state, two branches of “zero permittivity” gap appear in the PC band structure related to TM polarization. With increasing the amount of the filling rate of total volume with three level atoms, we observe a lot of changes in the PC band structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.