Abstract

Using Brillouin spectroscopy, the first observation has been made of the band structures of nanostructured defect magnonic crystals. The samples are otherwise one-dimensional periodic arrays of equal-width Ni80Fe20 and cobalt nanostripes, where the defects are stripes of a different width. A dispersionless defect branch emerges within the bandgap with a frequency tunable by varying the defect stripe width, while the other branches observed are similar to those of a defect-free crystal. Micromagnetic and finite-element simulations performed unveil additional tiny bandgaps and the frequency-dependent localization of the defect mode in the vicinity of the defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.