Abstract

We study the distribution of electronic spectral weight in a doped antiferromagnet with various types of charge order and compare to angle resolved photoemission experiments on lightly doped La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) and electron doped Nd$_{2-x}$Ce$_x$CuO$_{4\pm\delta}$. Calculations on in-phase stripe and bubble phases for the electron doped system are both in good agreement with experiment including in particular the existence of in-gap spectral weight. In addition we find that for in-phase stripes, in contrast to anti-phase stripes, the chemical potential is likely to move with doping. For the hole doped system we find that ``staircase'' stripes which are globally diagonal but locally vertical or horizontal can reproduce the photoemission data whereas pure diagonal stripes cannot. We also calculate the magnetic structure factors of such staircase stripes and find that as the stripe separation is decreased with increased doping these evolve from diagonal to vertical separated by a coexistence region. The results suggest that the transition from horizontal to diagonal stripes seen in neutron scattering on underdoped LSCO may be a crossover between a regime where the typical length of straight stripe segments is longer than the inter-stripe spacing to one where it is shorter and that locally the stripes are always aligned with the Cu-O bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.