Abstract

This work presents nonlocal pseudopotential calculations based on realistic, effective atomic potentials of the wurtzite phase of GaN, InN, and AlN. A formulation formulation for the model effective atomic potentials has been introduced. For each of the constitutive atoms in these materials, the form of the effective potentials is optimized through an iterative scheme in which the band structures are recursively calculated and selected features are compared to experimental and/or ab initio results. The optimized forms of the effective atomic potentials are used to calculate the band structures of the binary compounds, GaN, InN, and AlN. The calculated band structures are in excellent overall agreement with the experimental/ab initio values, i.e., the energy gaps at high-symmetry points, valence-band ordering, and effective masses for electrons match to within 3%, with a few values within 5%. The values of the energy separation, effective masses, and nonparabolicity coefficients for several secondary valleys are tabulated as well in order to facilitate analytical Monte Carlo transport simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.