Abstract

Recent advances in epitaxial growth have led to the prospect of artificial modification of the electronic structure or band structure of semiconductor materials. The combination of strain and quantum confinement in the valence band can lead to substantially more favorable energy dispersion relations for laser action than those existing in the natural semiconductor crystal. Numerical results are presented for a series of alloy compositions with a bandgap near the 1.55- mu m optimum wavelength for optical communications. The laser threshold current and the intervalence band absorption can be significantly diminished in properly engineered band structures.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call