Abstract
In this paper, the radial basis function (RBF) collocation method based on the nonlocal Eringen piezoelectricity theory is developed to compute the band structures of nanoscale multilayered piezoelectric phononic crystals taking account of nonlocal interface effects. Detailed calculations are performed for anti-plane transverse waves propagating obliquely or vertically in the system. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interfaces. The effects of nonlocal interface imperfections are considered by comparing with the nonlocal perfect interfaces. In addition, the influences of the piezoelectric constant, the nanoscale size, the impedance ratio and the incidence angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface discontinuity has more obvious effect on the low-frequency band structures at the microscopic scale than at the macroscopic scale. Furthermore, at the macroscopic scale, the nonlocal interface imperfection has an obvious effect on the high frequency waves, but the effect on the low frequency waves is not obvious, and the nonlocal interface imperfection has no effect on the cut-off frequency at the microscopic scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.