Abstract

Hyperspectral imagery generally contains enormous amounts of data because of hundreds of spectral bands. Band selection is often adopted to reduce computational cost and accelerate knowledge discovery and other tasks such as subsequent classification. An exemplar-based clustering algorithm termed affinity propagation for band selection is proposed. Affinity propagation is derived from factor graph, and operates by initially considering all data points as potential cluster centres (exemplars) and then exchanging messages between data points until a good set of exemplars and clusters emerges. Affinity propagation has been applied to computer vision and bioinformatics, and shown to be much faster than other clustering methods for large data. By combining the information about the discriminative capability of each individual band and the correlation/similarity between bands, the exemplars generated by affine propagation have higher importance and less correlation/similarity. The performance of band selection is evaluated through a pixel image classification task. Experimental results demonstrate that, compared with some popular band selection methods, the bands selected by affinity propagation best characterise the hyperspectral imagery from the pixel classification standpoint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.