Abstract
Face recognition with illumination or pose variation is a challenging problem in image processing and pattern recognition. A novel algorithm using band-reweighed Gabor kernel embedding to deal with the problem is proposed in this paper. For a given image, it is first transformed by a group of Gabor filters, which output Gabor features using different orientation and scale parameters. Fisher scoring function is used to measure the importance of features in each band, and then, the features with the largest scores are preserved for saving memory requirements. The reduced bands are combined by a vector, which is determined by a weighted kernel discriminant criterion and solved by a constrained quadratic programming method, and then, the weighted sum of these nonlinear bands is defined as the similarity between two images. Compared with existing concatenation-based Gabor feature representation and the uniformly weighted similarity calculation approaches, our method provides a new way to use Gabor features for face recognition and presents a reasonable interpretation for highlighting discriminant orientations and scales. The minimum Mahalanobis distance considering the spatial correlations within the data is exploited for feature matching, and the graphical lasso is used therein for directly estimating the sparse inverse covariance matrix. Experiments using benchmark databases show that our new algorithm improves the recognition results and obtains competitive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.