Abstract

Current methane gas leak detection technology uses infrared imaging in the medium wave (MW) or long wave (LW) bands, essentially applying cooled infrared detectors. In this study, a simplified three-layer radiative transfer model is adopted based on methane gas detection theory, considering background radiation, atmospheric infrared absorption, gas absorption, and emission characteristics to analyze the contrast of methane gas thermography in different infrared bands. The analysis results suggest that under certain conditions, the 6.6-8.6μm LW band provides higher contrast compared to the 3-5μm MW band. The optimal imaging wavelength band is selected according to imaging contrast advantages and disadvantages, and infrared optical systems and infrared filters are designed and optimized. We build a passive methane gas leak detection system based on uncooled infrared focal plane array detectors. By collecting gas images under different conditions, the imaging detection capabilities for methane gas leaks in the MW and LW bands in a laboratory environment are compared. Finally, the developing trends in methane gas detection technology are analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.