Abstract

A thickness dependent band gap is commonly found in layered two-dimensional (2D) materials. Here, using a C3N bilayer as a prototypical model, we systematically investigated the evolution of a band gap from a single layer to a bilayer using first principles calculations and tight binding modeling. We show that in addition to the widely known effect of interlayer hopping, de-charge transfer also plays an important role in tuning the band gap. The de-charge transfer is defined with reference to the charge states of atoms in the single layer without stacking, which shifts the energy level and modifies the band gap. Together with band edge splitting induced by the interlayer hopping, the energy level shifting caused by the de-charge transfer determines the size of the band gap in bilayer C3N. Our finding, applicable to other 2D semiconductors, provides an alternative approach for realizing band gap engineering in 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.