Abstract

Two-dimensional hexagonal boron nitride (h-BN) as a graphene-like material was investigated due to its impending applications in electronics. The h-BN band gap Eg as an important factor and its variation between bilayer ZrSe2 sheets were explored under an external electric field. The initially indirect band gap is found to convert to direct band gap by means of density functional theory. Additionally, the band gap is modulated by van der Waals corrections from 0.21220 to 0.01770 eV. Based on the results, the proposed heterostructure is converted to the direct band gap, and band gap smoothly decreased from 0.25440 to 0.0436 eV following the application of external electric field from 0.2 to 0.6 eV. Moreover, ZrSe2|h-BN|ZrSe2 is investigated under the applied biaxial compressive strain from 1 to 4%. The findings demonstrated that the gap was decreased by any compressive strain amplification, while the semiconducting behavior in the heterostructure attained to the semi-metallic performance under the increasing strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.