Abstract

In this work, band gap engineering of quaternary chalcogenides with the general formula of Cu2FexSn(1-x)S4 was conducted by substituting Sn atoms with Fe atoms. The morphology and crystalline structure of the synthesized nanostructured powder were studied by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), respectively. Optical properties of the nanostructured powder were studied by UV–Vis spectroscopy. The results indicate that substitution of Sn atoms with Fe atoms could transfer the tetragonal structure of CTS to tetragonal CFTS structure. The 1.54 eV band gap reached in 80 at.% replacement of Sn atoms with Fe atoms resulting in a tetragonal Cu2FeSnS4 flower-like structure. Moreover, by loading smaller amount of Fe atoms up to 20 at.%, no Fe atoms incorporation in CTS structure was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call