Abstract

π-Conjugated molecules with acceptor-donor-acceptor (A-D-A) electronic structures make up an important class of materials due to their tunable optoelectronic properties and applications in, for example, organic light-emitting diodes, nonlinear optical devices, and organic solar cells. The frontier molecular orbital energies, and thus band gaps, of these materials can be tuned by varying the donor and acceptor traits and π-electron counts of the structural components. Herein, we report the synthesis and characterization of a series of A-D-A compounds consisting of BF2 formazanates as electron acceptors bridged by a variety of π-conjugated donors. The results, which are supported by density functional theory calculations, demonstrate rational control of optoelectronic properties and the ability to tune the corresponding band gaps. The narrowest band gaps (EgOpt = 1.38 eV and EgCV = 1.21 eV) were observed when BF2 formazanates and benzodithiophene units were combined. This study provides significant insight into the band gap engineering of materials derived from BF2 formazanates and will inform their future development as semiconductors for use in organic electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.