Abstract

Deoxyribonucleic acid (DNA) doped with transition metal ions shows great versatility for molecular-based biosensors and bioelectronics. Methodologies for developing DNA lattices (formed by synthetic double-crossover tiles) and DNA layers (used by natural salmon) doped with vanadium ions (V3+), as well as an understanding of the physical characteristics of V3+-doped DNA nanostructures, are essential in practical applications in interdisciplinary research fields. Here, DNA lattices and layers doped with V3+ are constructed through substrate-assisted growth and drop-casting methods. In addition, enhanced physical characteristics such as the band gap energy, work function, dielectric constant, and susceptibility of V3+-doped DNA nanostructures with varying V3+ concentration ([V3+]) are investigated. The critical concentration ([V3+]C) at a given amount of DNA was predicted based on an analysis of the phase transition of DNA lattices from crystalline to amorphous with specific [V3+]. Generally, the [V3+]C provided crucial information on the structural stability and extremum physical characteristics of V3+-doped DNA nanostructures due to the optimum incorporation of V3+ into DNA. We obtained the optical absorption spectra for energy band gap estimation; Raman spectra for identifying the preferential coordination sites of V3+ in DNA; x-ray photoelectron spectra to examine the chemical state, chemical composition, and functional groups; and ultraviolet photoelectron spectra to estimate the work function. In addition, we addressed the electrical properties (i.e. current, capacitance, dielectric constant, and storage energy) and magnetic properties (magnetic field-dependent and temperature-dependent magnetizations and susceptibility) of DNA layers in the presence of V3+. The development of biocompatible materials with specific optical, electrical, and magnetic properties is required for future applications because they must have designated functionality, high efficiency, and affordability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call