Abstract

Field emission of electrons from narrow-band-gap and wide-band-gap one-dimensional nanostructures were studied. N-type silicon substrates enhanced the emission from the low-band-gap silicon nanowires and carbon nanotubes, whereas p-type substrates were a better choice for field emission from wide-band-gap silicon carbon nitride nanocrystalline thin films and nanorods. The role of the substrate-nanostructure interface was modeled based on different junction mechanisms to explain, qualitatively, the fundamentally different emission behavior of these nanostructures when n- and p-type silicon substrates were used. The results could be explained on the basis of simple carrier transport across the silicon-silicon nanowire interface and subsequent tunneling of electrons for the silicon nanowires. Schottky barrier theory can explain the better field emission of electrons from the n-type silicon supported carbon nanotubes. The decreased barrier height at the interface of the silicon-silicon carbon nitride heterojunction, when p-type silicon substrate was used, could explain the superior field emission in comparison to when n-type silicon substrates were used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.