Abstract

β-SiC nanowires were synthesized by a simple carbothermal reduction of carbonaceous silica xerogel. The morphology and structure of the nanowires were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscopy. The results showed that the nanowires were hexagonal prism-shaped hierarchical nanostructures. The typical stacking faults and twin defects of SiC nanowires were also observed. Band-gap characterization and photoluminescence properties of SiC nanowires were investigated by UV-vis absorption spectroscopy and fluorescence photometry, respectively. The results showed the SiC nanowire was an indirect transition semiconductor and the band gap energy for the SiC nanowires was 2.85 eV. The photoluminescence peak value at 470 nm (2.64 eV) originating from the SiC nanowires was a little higher than the value of band-gap energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.