Abstract

In this work, the banded behaviour of composite one-dimensional structures with an additive manufactured stiffener is examined. A finite element method is used to calculate the stiffness, mass and damping matrices, and periodic structure theory is used to obtain the wave propagation of one-dimensional structures. A multi-disciplinary design optimisation scheme is developed to achieve optimal banded behaviour and structural characteristics of the structures under investigation. Having acquired the optimal solution of the case study, a representative specimen is manufactured using a carbon fibre cured plate and additive manufactured nylon-based material structure. Experimental measurements of the dynamic performance of the hybrid composite structure are conducted using a laser vibrometer and electrodynamic shaker setup to validate the finite element model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.