Abstract

In this paper, we study the effect of uniaxial and biaxial strain on the structural and electronic properties of MoS monolayers by first-principle calculations based on density functional theory. Our calculations show that the bond length between Mo and S atoms depends linearly on the strain. At the equilibrium state, MoS has a direct band gap of 1.72 eV opening at the K-point. However, an indirect–direct band gap transition has been found in MoS monolayer when the strain is introduced. MoS becomes a semiconductor with an indirect band gap when the uniaxial strain or the biaxial strain . Under biaxial strain, a metal–semiconductor transition occurs at of elongation. The indirect character and phase transition will largely constrain application of MoS monolayer to electronic and optical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call