Abstract

Chemical composition is the primary factor that determines the electronic band structure and thus also influences the optical properties of plasmonic ceramics including nitrides and oxides. In this work, the optical and plasmonic properties of TiN, ZrN and their hypothetical intermediate alloys Ti1-xZrxN (x= 0, 0.25, 0.50, 0.75, and 1), are studied by using first-principles density functional theory. We demonstrate the effects of electronic band structure tuning (band engineering) on the dielectric properties by varying the concentration of metallic constituents. Our calculations reveal that bulk plasma frequency, onset of interband transitions, width of bulk plasmon resonance and cross-over frequency, can be tuned flexibly in visible spectrum region by varying the amount of Zr concentration in Ti1-xZrxN alloy system. We found that low threshold interband energy onset (~1.95 eV) leads to high losses in Ti rich compounds than that of ZrN which points to lower losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call