Abstract
The poor environmental stability of black phosphorous (BP) seriously limits its practical applications in (opto)electronics. Other than capping protective layers on its surface, herein we propose a new strategy to improve BP's ambient stability by engineering the interlayer interactions. Our first-principles calculations demonstrate that enlarging the interlayer spacing can effectively shift the conduction band minimum down to suppress the generation of superoxide and the enlargement can be achieved by intercalating small molecules like H2 and He into BP. Moreover, the molecule intercalated BP maintains high hole mobility, which makes it a better two-dimensional semiconductor for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.