Abstract

This article addresses band edge electronic structure of transition metal/rare earth (TM/RE) non-crystalline and nano-crystalline elemental and complex oxide high- k dielectrics for advanced semiconductor devices. Experimental approaches include X-ray absorption spectroscopy (XAS) from TM, RE and oxygen core states, photoconductivity (PC), and visible/vacuum ultra-violet (UV) spectroscopic ellipsometry (SE) combined with ab initio theory is applied to small clusters. These measurements are complemented by Fourier transform infra-red absorption (FTIR), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Two issues are highlighted: Jahn–Teller term splittings that remove d-state degeneracies of states at the bottom of the conduction band, and chemical phase separation and crystallinity in Zr and Hf silicates and ternary (Zr(Hf)O 2) x (Si 3N 4) y (SiO 2) 1− x− y alloys. Engineering solutions for optimization of both classes of high- k dielectric films, including limits imposed on the continued and ultimate scaling of the equivalent oxide thickness (EOT) are addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.