Abstract

Subwavelength resonant lattices offer a wide range of fascinating spectral phenomena under broadside illumination. The resonance mechanism relies on the generation of lateral Bloch modes that are phase matched to evanescent diffraction orders. The spectral properties and the total number of resonance states are governed by the structure of leaky modes and the mode count. This study investigates the effect of interface modifications on the band dynamics and bound-state transitions in guided-mode resonant lattices. We provide photonic lattices comprising rectangular Si3N4 rods with a liquid film with an adjustable boundary. The band structures and band flips are examined through numerical simulations using the rigorous coupled-wave analysis (RCWA) method and analyzing the zero-order spectral reflectance as a function of the incident angle. The band structures and band flips are examined through numerical simulations, and the influences of the refractive index and the thickness of the oil layer on the band dynamics are investigated. The results reveal distinct resonance linewidths corresponding to different refractive indices of the oil layer. Furthermore, the effect of the oil thickness on the band dynamics is explored, demonstrating precise control over the number of propagating modes within the lattice structure. Theoretical simulations and experimental results are presented for a subwavelength silicon-nitride lattice combined with a liquid film featuring an adjustable boundary. The presence of a relatively thick liquid waveguiding region enables the emergence of additional modes, including the first four transverse-electric (TE) leaky modes, which produce observable resonance signatures. Through experimental manipulation of the basic lattice's duty cycle, the four bands undergo quantifiable band transitions and closures. The experimental results obtained within the 1400-1600 nm spectral range exhibit reasonable agreement with the numerical analysis. These findings underscore the significant role played by the interface in shaping the band dynamics of the lattice structure, providing valuable insights into the design and optimization of photonic lattices with adjustable interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call