Abstract

GaP is a preferred candidate for the transition between Si and heterogeneous III-V epilayers as it is nearly lattice-matched to Si. Here, we scrutinize the atomic structure and electronic properties of GaP/Si(0 0 1) heterointerfaces utilizing hard X-ray photoelectron spectroscopy (HAXPES). GaP(0 0 1) epitaxial films with thicknesses between 4 and 50 nm are prepared by metalorganic vapor phase epitaxy on either predominantly single-domain (SD) or two-domain (TD) Si(0 0 1) surfaces. The antiphase domain content in the GaP films is in situ controlled, employing reflection anisotropy spectroscopy. Via the analysis of core level photoelectron intensities, we reveal core level shifts of the P 2p and Si 2p peaks near the interface as well as core level shifts in the Ga 3d peaks near the surface. We suggest an Inter-Diffused Layer (IDL) model of the GaP/Si(0 0 1) interfacial structure with SiP bonds at the heterointerface and residual P atoms in the Si substrate. Using a newly developed Parametrized Polynomial Function (PPF) approach, we derive a non-monotonic band bending profile in the heterostructures, correct experimental valence band offsets implying interfacial electronic barriers, and determine valence band discontinuities of ΔEV= 1.1 ± 0.2 eV (SD samples) and ΔEV= 0.8 ± 0.2 eV (TD samples) at GaP/Si(0 0 1) interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.