Abstract

We have used soft x-ray photoemission and optical emission spectroscopies to observe a broad range of Fermi level stabilization energies at metal interfaces with GaAs(100) surfaces grown by molecular beam epitaxy (MBE). The observed metal- and As-related interface cathodoluminescence plus orders-of-magnitude differences in bulk-defect-related photoluminescence between melt- versus MBE-grown GaAs suggest a role of bulk crystal growth and processing in controlling Schottky barrier formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.