Abstract
We report the growth of InAs(1-x)Sb(x) self-assembled quantum dots (QDs) on GaAs (100) by molecular beam epitaxy. The optical properties of the QDs are investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL). A type I to type II band alignment transition is demonstrated by both power-dependent PL and TRPL in InAs(1-x)Sb(x) QD samples with increased Sb beam flux. Results are compared to an eight-band strain-dependent k x p model incorporating detailed QD structure and alloy composition. The calculations show that the conduction band offset of InAs(1-x)Sb(x)/GaAs can be continuously tuned from 0 to 500 meV and a flat conduction band alignment exists when 60% Sb is incorporated into the QDs. Our study offers the possibility of tailoring the band structure of GaAs based InAsSb QDs and opens up new means for device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.