Abstract

Two-dimensional (2D) heterostructures have aroused widespread attentions due to the fascinating properties originating from the interfaces and the derived potential applications in modern electronics and optoelectronics. The interfacial band alignment engineering of 2D heterostructures would open up promising routes toward the flexible design and optimization of the electronic and optoelectronic properties. Herein, we report a one-step chemical vapor deposition method for the growth of band alignment continuously modulated WS2-WS2(1- x)Se2 x (0 < x ≤ 1) monolayer lateral heterostructures, with atomically sharp interfaces at the junction area. Local photoluminescence (PL) and Raman measurements demonstrate the position-dependent composition and band gap information on the as-grown nanosheets. Kelvin probe force microscopy (KPFM) investigations further confirm the tunable band alignments in the heterostructures, where a continuously decreased Fermi level difference between the core and the shell regions is observed with the x value varied from 1 to 0. The direct growth of high-quality atomic-level junctions with controllable band alignment marks an important step toward the potential applications of 2D semiconductors in integrated electronic and optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.