Abstract

We present measurements of the Zr and Si core level photoelectron binding energies relative to the Fermi level and the vacuum level under a ZrO2 growth series on Si(100). It is shown that the Zr core level binding energy is most properly referenced to the local vacuum level already from the monolayer regime. This confirms the insulating properties of ZrO2. The Si core levels are referenced to the Fermi level and undergo shifts consistent with the disappearance of the mid-band-gap states originating from the (2×1) reconstruction on the clean Si(100) surface. The use of O 1s x-ray absorption spectroscopy (XAS) to determine the location of the conduction band edge of ZrO2 is discussed with the aid of ab initio calculations. It is demonstrated that the conduction band edge is located at the XAS peak position and that the position relative to the valence band can be determined by aligning the O 1s XAS spectrum to the O 1s photoelectron spectrum. The study thus establishes that photoelectron spectroscopy in conjunction with x-ray absorption spectroscopy forms a most powerful tool for studies of the band alignment at metal oxide–silicon interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.