Abstract

Charge injection at metal/organic interfaces dictates the performance, lifetime, and stability of organic electronic devices. We demonstrate that interface dipole theory, originally developed to describe Schottky contacts at metal/semiconductor interfaces, can also accurately describe the injection barriers in real organic electronic devices. It is found that theoretically predicted hole injection barriers for various archetype metal/organic and metal/oxide/organic structures are in excellent agreement with values extracted from experimental transport measurements. Injection barriers at metal/organic and metal/oxide/organic interfaces can therefore be accurately predicted based on the knowledge of only a few fundamental material properties of the oxide and organic layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.