Abstract

Formation of a p-n junction-like with a large built-in field is demonstrated at the nanoscale, using two types of semiconducting nanoparticles, CsPbBr3 nanocrystals and CdSe nanoplatelets, capped with molecular linkers. By exploiting chemical recognition of the capping molecules, the two types of nanoparticles are brought into mutual contact, thus initiating spontaneous charge transfer and the formation of a strong junction field. Depending on the choice of capping molecules, the magnitude of the latter field is shown to vary in a broad range, corresponding to an interface potential step as large as ∼1 eV. The band diagram of the system as well as the emergence of photoinduced charge transfer processes across the interface is studied here by means of optical and photoelectron based spectroscopies. Our results propose an interesting template for generating and harnessing internal built-in fields in heterogeneous nanocrystal solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.