Abstract

Body area networks (BANs) are networks of medical devices implanted within or worn on the human body. Analysis and verification of BAN designs require (i) early feedback on the BAN design and (ii) high-confidence evaluation of BANs without requiring any hazardous, intrusive, and costly deployment. Any design of BAN further has to ensure (i) the safety of the human body, that is, limiting any undesirable side-effects (e.g., heat dissipation) of BAN operations (involving sensing, computation, and communication among the devices) on the human body, and (ii) the sustainability of the BAN operations, that is, the continuation of the operations under constrained resources (e.g., limited battery power in the devices) without requiring any redeployments. This article uses the Model Based Engineering (MBE) approach to perform design and analysis of BANs. In this regard, first, an abstract cyber-physical model of BANs, called BAN-CPS, is proposed that captures the undesirable side-effects of the medical devices (cyber) on the human body (physical); second, a design and analysis tool, named BAND-AiDe, is developed that allows specification of BAN-CPS using industry standard Abstract Architecture Description Language (AADL) and enables safety and sustainability analysis of BANs; and third, the applicability of BAND-AiDe is shown through a case study using both single and a network of medical devices for health monitoring applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.