Abstract

In guided bone regeneration surgery, a barrier membrane is usually used to inhibit soft tissue from interfering with osteogenesis. However, current barrier membranes usually fail to resist the impact of external forces on bone-augmented region, thus causing severe displacement of membranes and their underlying bone graft materials, eventually leading to unsatisfied bone augmentation. Herein, a new class of local double-layered adhesive barrier membranes (ABMs) is developed to successfully immobilize bone graft materials.The air-dried adhesive hydrogel layers with suction-adhesion properties enable ABMs to firmly adhere to the wet bone surface through a "stick-and-use" band-aid-like strategy and effectively prevent the displacement of membranes and the leakage of bone grafts in uncontained bone defect treatment. Furthermore, the strategy is versatile for preparing diverse adhesive barrier membranes and immobilizing different bone graft materials for various surgical regions. By establishing such a continuous barrier for the bone graft material, this strategy may open a novel avenue for designing the next-generation barrier membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call