Abstract
Human band 3 Walton is an AE1 mutation that results in the deletion of the 11 COOH-terminal amino acids of the protein and is associated with dominant distal renal tubular acidosis. The properties of band 3 Walton expressed with normal band 3 in the heterozygous mutant erythrocytes and the kidney isoform expressed in Xenopus oocytes and in the Madin-Darby canine kidney cell line were examined. The mutant erythrocytes have normal hematology but have reduced band 3 Walton content. Transport studies showed that erythrocyte band 3 Walton has normal sulfate transport activity, and kidney band 3 Walton has normal chloride transport activity when expressed in Xenopus oocytes. The mutant protein is clearly able to reach the cell surface of erythrocytes and oocytes. In contrast, while normal kidney band 3 was expressed at the cell surface in the kidney cell line, the Walton mutant protein was retained intracellularly within the kidney cells. The results demonstrate that band 3 Walton is targeted differently in erythrocytes and kidney cells and indicate that the COOH-terminal tail of band 3 is required to allow movement to the cell surface in kidney cells. It is proposed here that the mutant band 3 gives rise to dominant distal renal tubular acidosis by inhibiting the movement of normal band 3 to the cell surface. It is suggested that this results from the association of the normal and mutant proteins in band 3 hetero-oligomers, which causes the intracellular retention of normal band 3 with the mutant protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.