Abstract

We describe the design and manufacturing method of a lightweight C-doped MoS2 aerogel with a special regular banana leaflike microstructure used for high-performance microwave absorbers. The aerogel precursor was first fabricated by a self-assembly process between alginate (Alg) and ammonium thiomolybdate (ATM), where Alg as a template was assembled with ATM into regular banana leaflike architectures along the ice growth direction during oriented freezing. After pyrolysis at 900 °C, the C-doped MoS2 aerogels maintained low densities and porous hierarchal banana leaflike structures, where the banana leaves ranged in diameter from about 2 to 5 μm with the growth of small branches. Benefitting from these features, the C-doped MoS2 aerogel possessed excellent microwave absorption performance in the frequency range of 2-18 GHz. The minimum reflection loss (RL) reached -43 dB at 5.4 GHz with a matching thickness of 4 mm, and the effective microwave absorption band (RL < -10 dB) reached 4 GHz (14-18 GHz) at a thickness of 1.5 mm. Our findings also provide strategies for designing MoS2 aerogel nanostructures for electronic devices, catalysis, and other potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call