Abstract

We prove that there exists an equivalent norm ·\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\left| \\left| \\left| \\cdot \\right| \\right| \\right| $$\\end{document} on L∞[0,1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L_\\infty [0,1]$$\\end{document} with the following properties: The unit ball of (L∞[0,1],·)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(L_\\infty [0,1],\\left| \\left| \\left| \\cdot \\right| \\right| \\right| )$$\\end{document} contains non-empty relatively weakly open subsets of arbitrarily small diameter;The set of Daugavet points of the unit ball of (L∞[0,1],·)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(L_\\infty [0,1],\\left| \\left| \\left| \\cdot \\right| \\right| \\right| )$$\\end{document} is weakly dense;The set of ccw Δ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta $$\\end{document}-points of the unit ball of (L∞[0,1],·)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(L_\\infty [0,1],\\left| \\left| \\left| \\cdot \\right| \\right| \\right| )$$\\end{document} is norming. We also show that there are points of the unit ball of (L∞[0,1],·)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(L_\\infty [0,1],\\left| \\left| \\left| \\cdot \\right| \\right| \\right| )$$\\end{document} which are not Δ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta $$\\end{document}-points, meaning that the space (L∞[0,1],·)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(L_\\infty [0,1],\\left| \\left| \\left| \\cdot \\right| \\right| \\right| )$$\\end{document} fails the diametral local diameter 2 property. Finally, we observe that the space (L∞[0,1],·)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(L_\\infty [0,1],\\left| \\left| \\left| \\cdot \\right| \\right| \\right| )$$\\end{document} provides both alternative and new examples that illustrate the differences between the various diametral notions for points of the unit ball of Banach spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call