Abstract
We develop a duality theory between the continuous representations of a compactp-adic Lie groupG in Banach spaces over a givenp-adic fieldK and certain compact modules over the completed group ringo K[[G]]. We then introduce a “finiteness” condition for Banach space representations called admissibility. It will be shown that under this duality admissibility corresponds to finite generation over the ringK[[G]]: =K ⊗o K[[G]]. Since this latter ring is noetherian it follows that the admissible representations ofG form an abelian category. We conclude by analyzing the irreducibility properties of the continuous principal series of the groupG: = GL2(ℤ p ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.