Abstract
The question is addressed of when a Sobolev type space, built upon a general rearrangement-invariant norm, on an n-dimensional domain, is a Banach algebra under pointwise multiplication of functions. A sharp balance condition among the order of the Sobolev space, the strength of the norm, and the (ir)regularity of the domain is provided for the relevant Sobolev space to be a Banach algebra. The regularity of the domain is described in terms of its isoperimetric function. Related results on the boundedness of the multiplication operator into lower-order Sobolev type spaces are also established. The special cases of Orlicz-Sobolev and Lorentz-Sobolev spaces are discussed in detail. New results for classical Sobolev spaces on possibly irregular domains follow as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.