Abstract

Bamboo-based activated carbon is synthesized by a simple heat treatment with or without KOH activation, and characterized for possible energy storage applications. The KOH activation introduces a very large surface area of more than 3000 m2 g−1 to the bamboo-based activated carbon, resulting in high specific capacitance, energy density, and power density in an aqueous electrolyte. The specific capacitance retention is more than 91% of the original capacitance after 3000 cycles, proving excellent cyclic stability for supercapacitor applications. Our results indicate that the natural resource of common bamboo could be an essential raw material for the energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.