Abstract

Bamboo scrimber is a sustainable biomass composite with physical and mechanical properties that has potential applications in furniture. However, its performance across different furniture needs evaluation considering the specific requirements for furniture with different functions. In this study, we simulated a traditional armchair model with bamboo scrimber, ash, or beech as the substrate. Using the finite element method, we analyzed stresses and deformations under six working conditions. The results show that bamboo scrimber had a lower maximum deformation and higher maximum stress under the vertical loading of the seat, backrest, legs, and armrests. Under armrest lateral loading, ash exhibited a higher maximum stress and lower maximum deformation. For selecting furniture material, we propose a strategy that optimizes furniture design by combining the advantages of traditional and new materials according to the structural characteristics and stresses of different parts of the furniture. The results confirm that bamboo scrimber has a good deformation resistance and structural stability and can be used as a substitute for traditional wood in furniture manufacturing, especially for chairs subjected to complex loads. Our findings will help to improve sustainable development by promoting the application of bamboo scrimber in the furniture manufacturing industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.