Abstract

The β-barrel assembly machine (BAM) integrates β-barrel proteins into the outer membrane (OM) of Gram-negative bacteria. An essential BAM subunit (BamA) catalyzes integration by promoting the formation of a hybrid-barrel intermediate state between its own β-barrel domain and that of its client proteins. Here we show that in addition to catalyzing the integration of β-barrel proteins, BamA functions as a polypeptide export channel. Invivo structural mapping via intermolecular disulfide crosslinking showed that the extracellular "passenger" domain of a member of the "autotransporter" superfamily of virulence factors traverses the OM through the BamA β-barrel lumen. Furthermore, we demonstrate that a highly conserved residue within autotransporter β-barrels is required to position the passenger inside BamA to initiate translocation and that during translocation, the passenger stabilizes the hybrid-barrel state. Our results not only establish a new function for BamA but also unify the divergent functions of BamA and other "Omp85" superfamily transporters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.